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Properties of non-fcc hard-sphere solids predicted by density functional theory
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The free energies of the fcc, bece, hep, and simple cubic phases for hard spheres are calculated as a function
of density using the fundamental measure theory models of Rosenfeld et al. [Phys. Rev. E 55, 4245 (1997)],
Tarazona [Phys. Rev. Lett. 84, 694 (2001)], and Roth ef al. [J. Phys.: Condens. Matter 14, 12063 (2002)] in
the Gaussian approximation. For the fcc phase, the present work confirms the vanishing of the Lindemann
parameter (i.e., vanishing of the width of the Gaussians) near close packing for all three models and the results
for the hcp phase are nearly identical. For the bee phase and for packing fractions above 7~ 0.56, all three
theories show multiple solid structures differing in the widths of the Gaussians. In all three cases, one of these
structures shows the expected vanishing of the Lindemann parameter at close packing, but this physical
structure is only thermodynamically favored over the unphysical structures in the Tarazona theory and even
then, some unphysical behavior persists at lower densities. The simple cubic phase is stabilized in the model of

Rosenfeld ez al. for a range of densities and in the Tarazona model only very near close packing.

DOLI: 10.1103/PhysRevE.74.021121

I. INTRODUCTION

The fundamental measure theory (FMT) approach to
building approximate free energy density functionals has
proven very successful in describing the properties of inho-
mogeneous hard-sphere fluids including the hard-sphere fcc
solid [1-6]. The original form of FMT proposed by Rosen-
feld [1,2] was based on a generalization of the ideas under-
lying scaled particle theory. The Rosenfeld functional gave a
useful description of an inhomogeneous fluid but did not
stabilize the fcc solid. One important formal property of the
functional was that its second functional derivative with re-
spect to the density reduced to the Percus-Yevik direct cor-
relation function in the uniform liquid limit. Subsequent re-
finements were motivated in particular by the requirement
that the free energy functional reduce to the known exact
form when the density was restricted to zero- and one-
dimensional systems [3]. The resulting theories, discussed in
more detail below, retain all of the useful properties of the
original Rosenfeld functional while also stabilizing the fcc
solid and predicting the liquid-solid coexistence reasonably
accurately [3-6]. The theories also give a good description of
the mean-squared displacement of the atoms in the solid
phase including the nontrivial prediction that the mean-
squared displacement goes to zero as the density approaches
close packing.

The purpose of this paper is to present the results of the
application of the FMT to other crystalline structures of the
hard-sphere solid. There are two good reasons for carrying
out such a study. First, from a practical point of view, one
would like to be able to use the FMT to study solid-solid
phase transitions as well as a basis for the study, via thermo-
dynamic perturbation theory, of non-fcc solids along the
lines discussed in Refs. [7-10]. To do so with any confidence
first requires that the predictions of the FMT for non-fcc
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hard-sphere solids be well understood. The second reason is
that more loosely packed crystal structures may provide a
more demanding test of the theory than does the fcc phase
since the structure of the fcc phase is not that dissimilar to
that of the liquid: other structures differ more from the liquid
structure, e.g., in terms of the nearest-neighbor coordination.
As shown below, this expectation is borne out and the pre-
dictions of the properties of the bce phase in particular are
not as satisfactory as for the fcc phase.

The remainder of this paper is organized as follows. Sec-
tion II reviews the elements of density functional theory
(DFT) and FMT and discusses the difference between the
three FMTs considered in this work. The results of the cal-
culations are presented in Sec. III where it is shown that the
theories give very different results for different lattice struc-
tures. The final section summarizes the results of these cal-
culations and discusses obstacles that prevent any simple
modification of these theories to give a better description of
the bec phase.

II. FUNDAMENTAL MEASURE THEORY

As is usual in DFT, the Helmholtz free energy F is written
as a sum of an ideal contribution F;; and an excess contribu-
tion F,,. The former is given by

BFidp]= f [p(P)In A°p(7) = p(A]dr, (1)
where p(7) is the local density, N=[p(7)dr is the total num-
ber of particles and 8=1/kpT is the inverse temperature. In

the FMT approximation, the excess free energy functional is
written in terms of a set of local functions,

3
BF.[pl=| 2 Bo({nFlpDhdr (2)
i=1

which, as indicated, include a functional dependence on the
density through a family of local functionals of the form
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The weights w,(7) occurring in Eq. (3) are @(%—r), 5(r—§),
fé(r—%), and ffé(r—%) yielding the local density functionals
which will be denoted 7(r), s(r), v(7), f(?), respectively. For
a uniform liquid, in which p(F)=p, one has, in three dimen-
sions, that 7/(7)=é77035 which is the usual definition of the
packing fraction. The names of the other quantities are mo-
tivated by their scalar, vector, and tensor natures, respec-
tively. The first two contributions to the excess free energy
are

1
B == —s(AInl1 = (7],

_ 1L s()-0*0
270 [1-p(]
These are the same as in the original Rosenfeld theory. The

third function has been the focus of most efforts to refine the
FMT and we write it in the form

B, (4)

Beb, 1 10, (5)

" 81— 7(7)
where the only fundamental constraint on f is that lim,_,q f
=1 [3]. Three proposals in the literature, aside from the origi-

nal form f= %s3(7), which does not stabilize the bulk fcc
solid, are

1
Jrser= 553(3[1 -&Mr, &€= 20

fr= 300 T - 5) - 5@ - T ]
+s(ATATP]),

fo= 1= ﬂ(f)]z(ﬁfix[ﬂ(f)] o1 = ()] - M)f
3 1= n(r),

(6)

where frg - was proposed by Rosenfeld et al. [3] fr is the
tensor form proposed by Tarazona [4] and f§ is a heuristic
modification of f7 that allows for the insertion of an empiri-
cal equation of state for the liquid, Bf’, (7). In the latter case,
if the equation of state is chosen to be the Carnahan-Starling
equation [11], the resulting free energy functional is the
single-species version of the so-called “White Bear” func-
tional of Roth er al. [6], which was also proposed by Tara-
zona [5]. The first and second forms are closely related. In

fact, writing the tensor density as 7(r)=U (7)+%s(f)l, where
U(r) is traceless, a natural approximation for the traceless

part is to make it proportional to the only traceless tensor that
can be formed from the other densities,
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where A is a constant and the denominator is needed so that

5(7) scales linearly with the density in the sense that p(r)
— \p(7) implies that l7(?)—>)xl7(?). Substituting this into f;
gives fr= %53(7)(1 -3&843AE-A3E) which reduces to frg
provided that one takes A=1. The choice A=0 corresponds
to the original FMT theory of Rosenfeld. Note that one could
also divide by [v(7)| rather than s(7) in this ansatz, which is
equivalent to the replacement A—A’'&E'(r) giving fr
=%s3(17)[1—3§2+A’(3—A’2)§3]. Taking A'=1 gives the “in-
terpolation” form for ¢; discussed in Ref. [3].

The calculations reported here were performed using the
standard approximation of the density as a sum of Gaussians,

p(F)= 2 f(F=R,), 8)

where f(r):xo(%)y2 exp(—ar?). For a perfect lattice, one has
occupancy xp,=1 whereas values x,<<1 characterize a solid
with vacancies. The parameter « characterizes the width of

the Gaussians and {R,} is the set of lattice vectors of the
desired crystal structure. The density can also be written in
terms of components in reciprocal space as

p(F) = X exp(iK, - F)py» 9)

where {K,} is the corresponding set of reciprocal lattice vec-
tors and p,=xoN,eypeen eXp(—K>/4a) with N, being the
number of lattice sites per unit cell and p,,; being the num-
ber of unit cells per unit volume. Thus N, p..; 1S just the
number density of the perfect solid. From the fundamental
theorems of DFT, the equilibrium values of the parameters
X0» Peent» and a are those which minimize the grand potential,
BO=pF,[pl+BF,[pl-BuN for fixed chemical potential u
and volume V. The number of atoms is N=pV where the
average density is p= \l/f vp(Ndr=XoN cenpeer

The spatial integrals in Egs. (1) and (2) were performed
by sampling the arguments on a grid of points covering the
standard unit cell. The primary consideration in fixing the
number of points in the grid is that the spacing be sufficiently
fine so as to be able to sample the width of the Gaussians,
(AR)zzﬁ. In the calculations discussed below, the spacing
of the points in each Cartesian direction was set to dr
=a/(2q) where a is the lattice parameter and g was initially
set to 20 and then doubled until dr/AR<<0.5. Increasing the
number of points beyond this limit had no significant effect
on the results. Note that in the Gaussian approximation and
in the limit of aa?>1, the ideal contribution to the free
energy approaches the asymptotic value

ﬁfidaxo{gln(xoio;> —2.5}. (10)

This approximation was used for aa®>200. The plots of the
free energy as a function of « presented below were all gen-
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FIG. 1. (Color online) Dimensionless Helmholtz free energy per
atom, Bf=BF/N, as a function of « for the fcc hard-sphere solid as
calculated using (a) the RSLT theory, (b) the Tarazona theory, and
(c) the White Bear theory. From bottom to top, the curves are for
7=0.56—-0.68 in steps of 0.02. The arrows indicate the positions of
the secondary solid minima.

erated based on sampling the free energy at intervals of
dao?=1,5, 10, 50, and 250 for aa” <20, 200, 2000, 10 000,
and 20 000, respectively. The free energy minima were de-
termined using the the Simplex algorithm of Nelder and
Mead, see, e.g., Ref. [12], as implemented in the Gnu Scien-
tific Library [13], which was terminated when the simplex
size was smaller than 107,

III. RESULTS
A. fcc crystal

Figure 1 shows the free energies as a function of « for the
fce solid as calculated from the three theories for a variety of
average packing fractions 7= ’6—7503. These calculations are
performed for xy=1 which is known to be correct at the solid
minimum [3] and which we have verified is very close to the
free energy minimum at all values of «. All three theories
show a minimum for all densities at =0 corresponding to
the liquid phase. This is unphysical for the higher densities
which are well above random close packing, 7,.,~0.64, and
is a result of the use of the Percus-Yevik and Carnahan-
Starling approximate equations of state which are only sin-
gular at 77=1. On the other hand, note the consistency in the
location of the free energy minimum at finite « as well as of
the value of the free energy at the minimum. While the lo-
cation of the minimum in RSLT theory is somewhat higher
than for the other two theories, the differences are not large.
For all three theories, the location of the solid minimum
increases rapidly with density which is a characteristic fea-
ture of the FMT [3,5]. The Tarazona and White Bear func-
tionals differ primarily in the small-« region, due to the dif-
ference in the equations of state of the liquid, but at large «
the differences are negligible. The main difference between
the tensor theories and the RSLT theory is also in the small-
a region where, for 77>0.64 the RSLT theory predicts much
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FIG. 2. (Color online) The Lindemann parameter for the fcc
phase as a function of 7 as calculated using the RSLT theory (lower
line), the Tarazona theory (middle curve labeled T) and the White
Bear theory (upper curve labeled WB). Also shown as dotted lines
are the quadratic interpolation of the curves to L=0 based on the
data for 7>0.60.

larger energy barriers between the liquid and solid minima
than do the tensor theories. Note also that for a narrow range
of densities, 0.61 = 7= 0.63, the RSLT theory actually shows
two minima at nonzero values of «. This appears to be quite
unphysical since all atoms are, by hypothesis, assumed to be
identical and so it is hard to see how there could be two
metastable states with the same density but different vibra-
tional amplitudes.

The equilibrium free energy of the solid phase as a func-
tion of average density was determined by minimizing the
free energy functional with respect to both « and the lattice
parameter. From this, the densities of the coexisting liquid
and solid as predicted by each theory were determined in the
usual way by finding liquid and solid states with the same
pressure and chemical potential. The RSLT theory gives the
coexisting liquid and solid at packing fractions 0.491 and
0.534, respectively (compared to 0.491 and 0.540 reported in
Ref. [3] and 0.491 and 0.534 reported in Ref. [14]), the Tara-
zona theory gives 0.466 and 0.516 (compared to 0.467 and
0.516 reported in Ref. [5]) and the White Bear theory 0.489
and 0.535 (compared to 0.489 and 0.536 reported in Ref.
[5]). For comparison, the values from simulation are 0.492
and 0.545 [15]. The reason that the Tarazona theory gives
relatively poor predictions for coexistence is, paradoxically,
because it gives a rather good description of the solid while
the liquid equation of state is still that of the Percus-Yevik
theory which is inaccurate at the high densities that charac-
terize coexistence [5]. This is one of the main motivations
for introducing the empirical equation of state so that a free
energy functional is obtained that yields accurate values over
the entire range of structures.

The predicted Lindemann parameter, L which is the ratio
of the root-mean-square displacement to the nearest neighbor
distance, is shown in Fig. 2. For the fcc crystal, it decreases
monotonically with increasing density and extrapolates to
zero at a density near the fcc close-packing density of
Tree.cp=TT\2/6~0.74.

Similar calulations were performed for the hexagonal
close-packed (hcp) phase. Since hep only differs from fec at
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FIG. 3. (Color online) Same as 1 for the bce phase. In (b)
and (c), the arrows show the positions of the solid minima.
From  bottom to top, the curves are for n

=0.52,0.54,0.56,0.58,0.59,0.60,0.61,0.62,0.63,0.64,0.65.

the third nearest-neighbor shell, the free energies of the two
phases are expected to be very similar. Nevertheless, the cal-
culations are somewhat different as the fcc phase is a simple
Bravais lattice whereas the hcp is a simple hexagonal lattice
with a two-atom basis. As a result, it was found to be neces-
sary to increase the minimum number of points used to inte-
grate over the unit cell to 40 in order to obtain convergence
in the case of the hcp structure. For a packing fraction of
n=0.545, corresponding to the empirical melting point of the
fce lattice, the calculated difference in free energies per atom
for the two lattice structures were of order [Bficc—PBficp
~107® using the tensor theories, and an order of magnitude
smaller using the RLST theory. These results were indepen-
dent of whether the lattice density was held fixed or relaxed.
Neither increasing the number of points used in the integra-
tion nor reducing the tolerances used in the minimization
routines affected the calculated free energy difference. Nev-
ertheless, such small numerical differences could be due to
subtle effects, such as round-off error, and the strongest con-
clusion should probably be that the free energies of the two
phases are indistinguishable using FMT. At higher densities,
the calculated free energy difference only decreased further,
thus supporting the generality of this conclusion. In contrast,
simulations have consistently indicated that at the melting
point, the fcc phase is preferred with Bfy.,— Bffec ~ 1073k5T
[16,17].

B. bec crystal

Figure 3 shows the same calculations for the bee solid. In
this case, all three theories give multiple solid minima over
some range of densities. For 7= 0.56, the RSLT theory gives
two solid minima with the low-density minimum having
lower free energy than the high-density minimum and thus
being the preferred state. The Tarazona theory shows mul-
tiple minima for 7=0.61 with energies that differ by less
than 1%. In the range 0.61 < 7=0.63 the low-« branch has
slightly lower free energy while for 0.635< 7 the high-«
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FIG. 4. (Color online) The Lindemann parameter for the bcc
phase as a function of packing fraction 7 as calculated using the
RSLT theory, the Tarazona theory (labeled T) and the White Bear
theory (labeled WB). Both the low-a and high-« branches are
shown with the stable branch being drawn with full lines and the
unstable branch with dashed lines. Also shown as dotted lines are
the quadratic interpolation of the curves to L=0 based on the data
for 7> 0.60.

minimum is favored. The White Bear functional only devel-
ops a high-a minimum for 0.63 =< 7% and in all cases the low-
a minimum has lower free energy.

As seen in Fig. 4, the behavior of the Lindemann param-
eter for the bee crystal is more complex than in the case of
the fcc phase. All three theories give a “low-a” branch which
is not monotonic: the Lindemann parameter decreases with
increasing density at low densities, but then increases with
increasing density at high densities. This behavior is similar
to that of the effective-liquid-type DFTs [4,18] and is con-
sidered quite unphysical since, if the trend persisted up to
close packing, it would imply that spheres are able to inter-
penetrate. Rather, one expects the mean-squared displace-
ment to decrease uniformly with increasing density as in the
case of the fcc crystal. All three FMTs also give a second,
“high-a” branch which does behave physically at high den-
sities and, in particular, the Lindemann parameter extrapo-
lates to zero near the bcc close packing density of 7c._cp
=m\3/8~0.68. However, with the RSLT theory, up to 7
=0.625, the well-behaved branch has higher free energy than
does the unphysical branch. The Tarazona theory gives simi-
lar results except that the high-a minima are thermodynami-
cally favored at high density so that, as noted by Tarazona
[4,5], the prediction of the theory is that the Lindemann pa-
rameter appears to vanish near close packing, as it should.
Nevertheless, the prediction of the theory is that the Linde-
mann parameter increases with increasing density at interme-
diate densities as well as giving a discontinuous jump in the
Lindemann parameter for a packing fraction near 0.60, all of
which seem somewhat unphysical. Finally, the White Bear
theory also has a second branch but it only appears at very
high densities and also has higher free energy than does the
low-a branch. Comparison of Figs. 2(b) and 2(c) shows that
the reason for the observed behavior is that the Carnahan-
Starling equation of state used in the White Bear functional
lowers the liquid free energy relative to the Percus-Yevik
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FIG. 5. (Color online) Same as Fig. 1 for the sc phase. From
bottom to top, the curves are for 7 in the range [0.43,0.52] in steps
of 0.01.

equation of state that comes out of the Tarazona theory. As «
increases, the effect lessens until at high « the theories are
almost identical. Thus the free energy of the low-« minimum
is somewhat lower in the White Bear theory leading to its
stability persisting even up to high densities.

C. sc phase

For a purely repulsive potential, the simple cubic phase is
expected to be unstable with respect to shear. Nevertheless,
there is no reason that DFT should not give a well-defined
free energy for this structure since it should be metastable.
Indeed, at least one of the effective-liquid theories, the Gen-
eralized Effective Liquid Approximation, does give a stable
structure with small values of a [18].

Figure 5 shows the free energy curves calculated using the
three theories. The results from the RSLT theory are much as
expected: the simple cubic phase stabilizes at quite low den-
sities, 7~ 0.45, and the location of the free energy minimum
increases with increasing density and appears to diverge as
the simple cubic close packing, 7s.,=m/6~0.524 is ap-
proached. In this case, there is no indication of multiple
minima. In contrast, the tensor theories show no sign of a
a# (0 minimum except at densities very close to close pack-
ing. Extending the calculations up to ao®=20 000, no mini-
mum was found in the %=0.51 curve using either of the
tensor models while for 7=0.52 the Tarazona theory sta-
blizes the solid at ao®~ 11500 and there is again no mini-
mum using the White Bear (WB) theory.

D. Relative stability

The last question we adress is the relative stability of the
various structures. Table I shows the minimum densities at
which each structure becomes stable in the various FMT
models. For the fcc and bec structures, the RSLT and WB
theories give quite similar results while the Tarazona theory
generally stabilizes the solid at a lower density about 5%
below the other theories. In all cases, the fcc phase is stable
at lower densities than the bcc phase.

PHYSICAL REVIEW E 74, 021121 (2006)

TABLE 1. (Color online) The minimum packing fractions at
which the various FMT models predict the different crystal struc-
tures become metastable and the approximate value of the Gaussian
parameter « at this density.

Structure Theory Tsol ac?
fcc RSLT 0.49 27
T 0.46 22
WB 0.48 26
bce RSLT 0.51 14
T 0.48 20
WB 0.51 24
sc RSLT 0.47 1150
sc T 0.52 11250
N¢ WB

The free energies as functions of the average density are
shown in Fig. 6. In all models, the fcc phase has the lowest
free energy of any solid phase at all densities. The free en-
ergy of the bee phase is very close to that of the fcc at low
densities and steadily diverges at increasing densities. The
fcc phase has slightly higher free energy than the liquid at
the lowest densities. The low-a branch of the bce phase al-
ways has lower free energy than the liquid, although in the
RSLT theory they are almost identical. In the RSLT, the
simple cubic structure has much higher free energy than any
other phase.

IV. CONCLUSIONS

In summary, the present calculations confirm the fact that
the three FMT’s discussed all give reasonable results for the

15

10

Bf

FIG. 6. (Color online) The free energy minima for the liquid
phase and the various crystal structures as functions of the average
packing fraction calculated using (a) the RSLT theory, (b) the Tara-
zona theory, and (c) the White Bear theory. The lowest curves are
for the fce structure, the intermediate curves are the low-a (full) and
high-a (dashed) bce branches and the light curve that spans the
width of the figures are for the liquid phase. In (a), the upper curve
is for the simple cubic structure.
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fcc phase at all densities up to fcc close packing with the
only exception being the appearance of a spurious low-«
minimum at high densities in the RSLT theory. None of the
theories were able to meaningfully differentiate between the
hep and fce phases. On the other hand, when applied to the
bee phase, these results indicate several unphysical proper-
ties of the fundamental measure theory functionals which
must be carefully considered when using them, e.g., as the
basis for thermodynamic perturbation theory. All of the theo-
ries appear to give reasonable results at moderate densities,
say up to 7~ 0.56. However, the simplest model, the RSLT,
gives multiple solid minima for all packing fractions in the
bee phase above about 0.56. The Tensor theories do not give
multiple minima for the fcc phase but they do for the bec
phase. As the density increases, the stable minima in the
Tarazona theory switches from the unphysical branch to the
physically well-behaved branch whereas the White Bear
theory always picks out the unphysical branch. Only the
RSLT and Tarazona theories stablize the simple cubic phase,
at least for ao? <20 000, but the Lindemann parameter is, in
this case, well-behaved and there are no spurious minima.
Unfortunately for the goal of choosing a single theory to
describe both the liquid and all solid phases, the RSLT and
WB theories give poor results for the bcc phase Lindemann
parameter while the Tarazona theory gives the worst quanti-
tative description of fcc-liquid coexistence.

It is interesting to speculate on the resolution of the com-
mon deficiencies in these theories. It seems reasonable to
attribute the unphysical behavior at high densities, which is
manifested by the fact that the unphysical low-« minimum is
favored, to a poor description of the liquid phase: the free
energy of the liquid must clearly diverge at high densities
and in fact it has long been debated whether the hard-sphere
liquid-phase equation of state possesses a singularity at high
densities [19]—at, e.g., random close packing [20] or fcc
close packing [21]. If the free energy of the liquid did indeed
diverge at random close packing, then the curves shown in
Figs. 1 and 3 would be deformed with the low-a free ener-
gies “pulled up.” This could conceivable eliminate altogether
the low-& minima and thus give a reasonable picture of the
bce phase. However, as appealing as this scenario is, it can-
not be implemented naively using Eq. (6) to give the equiva-
lent of the “White Bear” improvement to the Tarazona
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theory. This is because Eq. (6) requires that the equation of
state be evaluated at the local packing fraction 7(7) and for
the solid phase there are always points at which 7(7) is very
nearly equal to 1 unless « is very small. [In particular, it is

easy to see that lim,_,,, 7(0)=1.] Thus simply inserting an
equation of state with a divergence for 7<<1 is not an option
since this will lead to divergent free energies in the solid
phase, even for the already well-described fcc phase. A fur-
ther problem with this type of development is that larger
packing fractions can also occur in the case of mixtures of
different sized spheres so that any simple divergence at large
packing fractions could be problematic in this case as well.

One approximation not tested here is the use of the Gauss-
ian profile for the densities. Tarazona has performed calcula-
tions using more general parametrizations of the density and
he reports that the generalization beyond the Gaussian is of
negligble importance for the equation of state [4]. Groh and
Mulder have also supplied evidence for the fcc phase that the
Gaussian approximation is quite accurate, especially near the
peaks of the density distribution [22]. This suggests that the
effects reported here are not due to the Gaussian approxima-
tion but definitive proof will require further calculations us-
ing non-Gaussian profiles.

In summary, the fundamental measure theories work well
for the fec (and hep) phase at all densities while for the bec
phase, the FMTs are best applied to the solid phase for den-
sities near liquid-solid coexistence. While they can in prin-
ciple be used to model the bce phase at higher densities, and
while they do show some desirable features at high density
like the vanishing of the Lindemann parameter at close pack-
ing, they also suffer from the same problem that plagued
earlier DFT models: namely, the unphysical behavior of the
Lindemann parameter for the bcc phase at intermediate den-
sities. On the other hand, the sc phase is well modeled, at
least using the RSLT theory, perhaps because it only exists at
relatively low densities.
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